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If, in an ^-dimensional crystal, the structure of a simple (^=1) or complex (d>i) energy band fulfills 
proper symmetry conditions, the band can be spanned by a set of Wannier functions and, in many cases, the 
following statements can be established. (1) There exists a set of Bloch waves (d= 1) or quasi Bloch waves 
(d> 1) which are periodic and analytic functions of the complex wave vector K = K'-WK" in a domain of the 
complex K space defined by an equation of the form [K"| <A where A is a positive constant. (2) The cor­
responding Wannier functions fall off exponentially at infinity. 

I. INTRODUCTION 

TH E eigenstates of a one-electron Hamiltonian H 
which is invariant with respect to the transforma­

tion of a space group G#, can be expressed linearly in 
terms of orthonormal local orbitals by using group theo­
retical methods. A precise definition of such orbitals1 

and a complete description of their symmetry properties 
have been given by the author in a previous work2 

(paper I) . Unfortunately, this method does not show 
how to build really localized orbitals because the nature 
of the problem is rather analytical and topological and 
has very little to do with group theory. Actually, the 
answer to this question seems far from simple; it depends 
on our definition of the localizability properties of the 
orbitals and also on the specific properties of the Hamil­
tonian H. However, if G contains a subgroup T of 
translations, the system can be considered as a cyclic 
crystal (or infinite crystal) and this case which is 
especially interesting, seems also easier to treat. In 
crystals, local orbitals are called Wannier functions and 
the present work deals with the localizability properties 
of these functions. Infinite linear crystals with a center 
of symmetry have been studied by Kohn.3 He showed 
that there is always a unique way of associating with 
each band, a single set of symmetric or antisymmetric 
Wannier functions falling off exponentially at infinity. 
This property results from the analyticity of the Bloch 
waves with respect to the wave number K — KfJriK" 
in a strip of the complex K space; this strip is denned 
by an equation of the form \K"\<A where A is a 
positive constant characteristic of the band. 

Here, we want to generalize these results for two- or 
three-dimensional crystals. However, as the Schrodinger 
equation, in this case, is no longer an ordinary but rather 
a partial differential equation, the problem is much 
more difficult to solve and Kohn's approach cannot be 
used. In an ^-dimensional crystal (n> 1), the structure 
of the energy bands is also more complicated than in the 
linear case. In general, a band is made of several branches 
which touch each other. By definition, if two branches 
are connected, they belong to the same band; on the 

1 This question has been discussed by E. I. Blount, Solid State 
Phys. 13, 305 (1962). 

2 J. des Cloizeaux, paper I, Phys. Rev. 129, 554 (1963). 
3 W. Kohn, Phys. Rev. 115, 809 (1959). 

contrary, a given band (B never touches any other band; 
it is isolated. The number of Bloch waves which, for 
each (real) value of the wave vector K, belong to (B is a 
constant d. Thus, the band can be simple (d=l) or 
complex (d> 1). If the band (B is simple, it contains, for 
each value of K, only one Bloch state; in this case, it 
seems, a priori, possible to build a Bloch wave which is 
an analytic function of the wave vector K = K'-H'K" 
in a strip of the complex K space; this strip could be 
defined by an equation of the form | K" | < A where A 
is a positive constant. In this case, the existence of 
Wannier functions with exponential tails can be directly 
related to this property of analyticity of the Bloch 
waves. However, if the band (B is complex ( d > l ) , the 
Bloch waves which belong to (B cannot be analytic 
functions of the wave vector K for real values of K; in 
this case, the energy is a multivalued function of K; the 
points where several branches touch each other are 
branch points of this function and, of course, they are 
also branch points for the Bloch waves. This remark 
does not imply the impossibility of representing a com­
plete band (B by a set of localized Wannier functions; it 
indicates only that a generalization of Kohn's results is 
not trivial and that a different method of approach is 
needed. The Bloch waves of wave vector K belonging 
to a given band (B span a subspace S(K) of dimension d, 
which can be defined by the operator P(K) of projection 
on S(K). This operator P(K) can be expressed directly 
in terms of Bloch waves and has also nice analyticity 
properties. Actually, we showed in a preceding work4 

(paper II) that the matrix elements (r | P(K) | r ') of P(K) 
are in general continuous functions of r and r', that they 
can be defined for complex values of K = K ' + i K " and 
that they remain analytic in a strip of the complex 
K space; this strip is defined by an equation of the form 
| K" | <A where A is a positive constant which depends 
on the characteristics of (B. This result is valid for any 
kind of band and for this reason, we use the operator 
P(K) to build Bloch waves (when d= 1) or so called 
quasi Bloch waves (when d> 1), which are analytic 
functions of K in a strip of the complex K space. The 
existence of Wannier functions with exponential tails 
turns out to be a consequence of these analyticity 
properties. 

1 J. des Cloizeaux, paper II, Phys. Rev. 135, A685 (1964). 
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In Sec. I I , the main properties of P(K) are sum­
marized. In Sec. I l l , simple energy bands are studied. 
Relations connecting Bloch waves and Wannier func­
tions are given in Sec. IIIA. Bloch waves are built in 
Sec. I I IB with the help of the operator P (K) ; trial 
Wannier functions are used to determine the phases of 
the Bloch waves corresponding to different values of K. 
The normalization of these waves introduces a difficulty. 
However, as we show in Sec. I I IC, the difficulty is not 
very serious if the crystal has a center of inversion, and 
it is also possible to overcome it in other special cases. 
In Sec. IV, a generalization of the method is applied to 
complex bands. In this case, the Bloch waves cannot be 
analytic with respect to K for real values of K and we 
are obliged to introduce a new set of waves called quasi 
Bloch waves; these waves may be analytic but are not 
eigenfunctions of the Hamiltonian H. A survey of the 
group theoretical aspects of the problem is made in 
Sec. IVA. Quasi Bloch waves are defined in Sec. IVB in 
terms of the corresponding Wannier functions and the 
general properties of these waves are listed in Sec. IVC. 
In Sec. IVD, we build quasi Bloch waves directly by 
using the operator P(K) of the band and trial Wannier 
functions. In general, the analyticity of the operator 
P(K) entails the analyticity of the Bloch waves. Finally, 
the orthonormalization difficulty is discussed in 
Sec. IVE. 

II. REVIEW OF THE MAIN PROPERTIES OF THE 
OPERATORS P(K) AND P=fP(K)dnK (INTE­

GRATION ON THE BRILLOUIN ZONE) 

The eigenstates of the Hamiltonian H are Bloch 
states (<p(/,K)). The index / characterizes both the band 
and the branch to which the state belongs. Thus, if t is 
a translation vector of the crystal, we have by definition 

<r+t|*a,K)>=e«t<r|«>(*,K)>. (1) 

Dirac-type normalization is used for these states 

<«,(/,K)|e(Z',K')>=Se(K-K')*H'. (2) 

The function 5C(K— K') is given by 

5 c ( K - K ' ) = E « ( K - K ' + u ) , (3) 
u 

where the summation is made over all the translations 
u of the reciprocal lattice. 

The operator P(K) which is associated with a given 
band (B can be defined for real values of K by 

? ( K ) = E | ^ K ) K ^ K ) | . (4) 
zees 

The Bloch states which appear in this formula are those 
which belong to (B. The operator P(K) can be defined 
by its matrix elements ( r | P ( K ) | r ' ) and according to 
Eq. (1), we have 

< r + t | P ( K ) | r , ) = < r | P ( K ) | r , - t ) = ^ K t { r | P ( K ) r , ) . (5) 

On the other hand, the fact that P(K) is a projection 
operator appears in the following relation: 

P ( K ) P ( K 0 = 5 C ( K - K ' ) P ( K ) , (6) 

which is a direct consequence of Eq. (2). 
In paper I I , it was shown that the matrix elements 

( r | P ( K ) | r ' ) can be defined also for complex values of 
K = K ' + ^ K " and that they remain analytic in a strip 
of the complex K plane; this domain is defined by an 
equation | K" | <A where A is a positive constant inde­
pendent of K', r and r'. Of course, for values of K be­
longing to this region, Eq. (5) remains valid but P(K) 
is not an Hermitian operator if K is complex. 

In paper II , we introduced also the operator P which 
is an integral of P(K) over the Brillouin zone, 

P= f P(K)d»K. (7) 
JB.Z. 

According to Eq. (6) P is a projection operator and 
we have 

P2=P. (8) 

This operator is periodic, in the following sense: 

< r + t | P | r ' + t > = < r | P | r / > . (9) 

In connection with the analyticity properties of P (K) , 
it was proved also that the matrix elements ( r | P | r ' ) 
decrease exponentially with the distance | r—r ' | . More 
explicitly, we may write ( 0 < e < l ) 

l i m ^ < r + t | P | r ' ) = 0. (10) 
t-*oo 

This result is used in Sec. I I IC. 

III. WANNIER FUNCTIONS FOR SIMPLE 
BANDS IN AN INFINITE CRYSTAL 

A. Wannier Functions and Bloch Waves 

When a band <B consists of one sheet only (d= 1), its 
analyticity properties are simple, and the definition of 
the corresponding Wannier functions are more straight­
forward than in the general case. For this reason, this 
section deals only with simple bands and the treatment 
of this interesting case serves as an illustration of the 
general method which is described in Sec. IV. 

Here, the basic assumptions of paper I I concerning 
the group theoretical properties of Wannier functions 
are used, but, in the case of simple bands, they are 
rather trivial. The set of all the space transformations 
which leave the Hamiltonian H invariant is a group G#. 
The Wannier functions are located around sites M. By 
definition, these sites are generated by applying to an 
origin Mo all the elements of Gj*; thus, when the band 
(B is simple, they must form a translation lattice <£. On 
the other hand, when (B is simple, we associate only one 
Wannier function with each site; it is assumed that this 
function is the basis of a one-dimensional representation 
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of the subgroup G M consisting of all the elements of G# 
which leave M invariant. Of course, the symmetry 
properties of the Wannier functions are determined by 
the characteristics of the band. In the following, we 
consider the lattice <£ and the representation TM™ as 
given and compatible with the properties of the band 
(B which the Wannier functions must span. 

In particular, if there is a center of inversion in the 
crystal, the points M are centers of inversion. This 
property can be derived as follows. Let / be an inversion 
belonging to G#; it transforms any point P of the 
ordinary space into a point P ' ; for instance, it trans­
forms the origin Mo of <£ into Mo and we have 

M o P + M o T ^ O . (11) 

As the points M are obtained by applying all the ele­
ments of G# to i f o, the lattice <£ remains invariant, with 
respect to I. Therefore M0' belongs to £ and MoMo' is a 
translation vector of the crystal. Let us now consider 
the transformation 70 which is the product of I by a 
translation of vector M(/Mo: it belongs to G# and trans­
forms P into P " . We have 

P ' P " = M o ' M 0 . (12) 

By combining Eqs. (11) and (12), we obtain 

M o P + M 0 P " = 0 . (13) 

Therefore, the transformation I0 is an inversion with 
respect to Mo. Thus, if the crystal has a center of in­
version, the sites M are also centers of inversions and, 
the Wannier function which corresponds to a site M 
must be symmetrical or antisymmetrical with respect 
toM. 

Special attention is paid to the problem of simple 
bands, for crystals having a center of inversion, because 
in this case, we can prove directly the existence of 
Wannier functions decreasing exponentially at infinity. 
In other cases, (simple bands without centers of in­
version, complex bands), a special difficulty prevents 
giving a really general proof of this possibility. The 
nature of this difficulty is explained in Sec. I I IC. 

The Wannier functions can be defined now in terms 
of Bloch waves and conversely. By definition, the 
Wannier functions which are associated with a simple 
band (B, are given in terms of the Bloch waves belonging 
to (B by 

\M)=Q-^f d » K e x p [ - i ( K - M 0 M ) ] | ^ ( K ) > . (14) 
J B.Z. 

The domain of integration is the Brillouin zone of 
volume 0. The states \<p(K)) are normalized [see 
Eq. (2)] 

<*(K) |*>(K0>=*. (K-K0, (15) 

and, therefore, we have 

{M\M')=bMM>. (16) 

Conversely, the Bloch states are sums of Wannier 
functions: 

|^(K)> = O - ^ E e x p p ( K . M 0 M ) ] | M > . (17) 
M 

This expansion is a Fourier series with respect to K 
because the vectors M0M coincide with the translations 
t of the crystal. This expression can be written in a 
slightly different way. By using Eq. (1) and definition 
(14), we obtain 

( r | M ) = ( r + M M o | M o ) . (18) 

We can now apply this identity to transform Eq. (17) 

<r|^(K)> = Q- 1 / 2 E^ i K t <r- t | i l fo>. (19) 
t 

This equation is convenient to discuss the connection 
which appears between the analyticity properties of the 
Bloch waves and the asymptotic properties of the 
Wannier functions. I t is well known that the asymptotic 
behavior of the coefficients of a Fourier series is directly 
related to the analytic properties of the sum of the series. 
Actually, a direct application of a typical theorem (Sec. 
I I IB of paper II) shows that, if the function (r | <p(K)) 
of the complex vector K = K ' + i K " is analytic in a strip 
of the complex K space defined by an equation | K" | < A 
(where A is a positive constant), then the Fourier co­
efficients (r+t|Afo) satisfy conditions of the form: 
(with 0 < e< 1 and r fixed) 

l i m ^ ' ( r + t | M ) = 0. (20) 
t-*oo 

The converse is also true because the existence of rela­
tions of this kind [Eq. (20)] implies the uniform con­
vergence of the series (19) in any compact region con­
tained in the domain | K" | <A. 

Our problem is now reduced to the construction of 
Bloch functions which are analytic with respect to K, in 
strips centered on the real K space. If this is possible, 
there exists always a set of localized Wannier functions. 

B. Construction and Analyticity of the 
Bloch Waves 

The operator of projection P(K) on the Bloch state 
of wave number K, belonging to a simple band (B, can 
be defined directly by its matrix elements ( r | P ( K ) | r ' ) 

< r |P (K) | r '>=<r | ^ (K) )^ (K) | r '> . (21) 

This definition is valid for real values of K only, but can 
be generalized without difficulty for complex values of 
K. In paper II , it was shown that the matrix elements 
( r |P(K) | r '> are analytic functions of K = K '+*K" in a 
domain defined by a condition of the form | K" | <A, 
where A is a positive constant independent of K7, r, and 
r'. This property of the matrix elements of P(K) is used 
to build analytic Bloch waves. 
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The matrix elements (r |P(K)|r ') are invariant with 
respect to phase transformations of the wave function 
(r|<p(K)). Therefore, in order to construct explicitly 
this function, we have to find a means of fixing its phase. 
We note that according to Eqs. (21), (17), and (16), 
we have 

\9(R))=&'*P(K)\M0). (22) 

Therefore, it seems natural to introduce a trial Wannier 
function (r|M"0) which is an arbitrary normalizable 
function and to define the Bloch waves by putting 

UK))=[G(K)]-^P(K)| i if„>, (23) 

G(K) = (M0\P(K)\M0). (24) 

This Bloch function is obtained by projection of the 
trial Wannier function on the subspace which contains 
| <?(K)). This subspace is determined by P(K). More 
precisely, we define (r | <p(K)) by the following equations: 

<r|^(K)>=CG(K)3-^<r|^(K)>l (25) 

<r|*(K)>= ( jV<r |P (K) | r> ' |Mo>, (26) 

G(K) = d-r /dV<Afo|r><r|P(K)|r,><r,|Afo>. (27) 

Here (r | ̂ (K)) is not a normalized function and [G(K) J-1/2 

is the normalization factor. By definition, when K is 
real, G(K) is non-negative but difficulties may arise if 
G(K) vanishes for a real value of K. For this reason, we 
choose trial functions (r|ilf0) which have always the 
same symmetry properties as the true Wannier func­
tions (r|Afo). These symmetry requirements are deter­
mined by the structure of the band. (See paper I.) 

The preceding formulas can be used for complex 
values of K. The operator P(K) is defined and analytic 
in the domain |K"|<^4 and Eq. (5) shows that for 
\K"\^B<A, we have 

K r | P ( K ) | r ' + t ) K ^ | ( r | P ( K ) | r ' ) | . (28) 

In order to insure a uniform convergence of the integrals 
of Eq. (26) and (27), in any closed domain defined by an 
inequality of the form |K" | ^ J5 , we choose a trial 
Wannier function which satisfies the condition 

^'|<r|iEr0>|<oo. (29) 

For instance, we may choose a trial Wannier function 
with a cutoff ((r|M"o) = 0 for |r | >R). As the integrals 
converge uniformly the functions (r|^(K)) and G(K) 
are analytic with respect to K, for |K"| <A. On the 
other hand, by definition, for K real G(K) is always 
finite, real, and non-negative. If G(K) is strictly positive 
for real values of K, the inequality |G(K) | >0 remains 
true in a domain defined by an equation of the form 
| K"| <A0^A where A0 is a positive constant. In this 
case, [G(K)]~1/2 is analytic in the same domain. Con­

sequently, (r| <p(K)) is also an analytic function of K, 
in the domain defined by | K" \<A0. The corresponding 
Wannier function decreases exponentially at infinity5 

as was predicted in Sec. IIIA. 
Unfortunately, G(K) may vanish for real values of K. 

This fact introduces difficulties which are discussed in 
the next section. 

C. Analyticity of [G(K)]-11* and Existence of 
Localized Wannier Functions 

The analyticity of the wave function (r|<p(K)) de­
pends essentially on the analyticity of the operator 
[G(K)]1/2. Unfortunately, we do not know whether, by 
a proper choice of the trial Wannier function, it is 
always possible or not, to obtain functions G(K) which 
do not vanish or real values for K; actually this problem 
is of topological nature and may be difficult to solve 
directly. For this reason, in this section, we present only 
a discussion of the difficulties which are introduced by 
the fact that G(K) may vanish for real values of K. 

We prove the possibility of building localized Wannier 
functions (with exponential tails) in the following cases. 
(1) The atoms are far apart. This is the strong binding 
limit. (2) The crystal is linear. The result is not new 
because the problem has been treated by Kohn.3 (3) The 
crystal has a center of inversion. (4) The Hamiltonian 
of the problem depends on a real parameter and the 
property can be derived by continuation. 

In the strong binding limit, when the atoms of the 
crystal are far apart, we can choose the atomic orbitals 
(with a cutoff) as trial functions. In the vicinity of the 
atom centered at the origin M0, the Bloch function 
looks very much like the atomic orbital and therefore 
it can never be orthogonal to the trial Wannier function, 
which we are using. In this case, for real values of K, 
G(K) remains always positive. 

Linear crystals can be treated also in a very simple 
way. Let us show that the vanishing of G{K) for a value 
K—KQ, does not prevent us from building Bloch waves 
which are analytic for K=K0. As GiK) is analytic, it can 
be expanded in convergent series, in the vicinity of 
K=Ko, and, as it is non-negative for real values of K, 
this expansion can be written 

G(K) = a\K-K,yv[\+ e(K- K0)l. (30) 

Here a is a positive constant, p an integer and e(K—K0) 
an analytic function of K, which has a zero for K~K0. 
Thus we have 

[G(K)yi*=±a(K-K0)vZl+e(K-~Ko)y/2. (31) 

We can choose a determination of [_G(K)~]in which is 
perfectly analytic for K=K0. On the other hand, if 

5 Conversely, if there exist really localized Wannier functions, 
it is always possible to build functions G(K) which never vanish 
for real values of K; in fact, we may choose as trial Wannier 
functions, the true localized Wannier functions since we know 
that these functions have exponential tails. 



A702 J A C Q U E S D E S C L O I Z E A U X 

G(K) has a zero for K—K0, it has a zero of the same 
order for K=—K0. This is a consequence of Kramers 
degeneracy. Now we may always assume that G(0 )^0 
and G ( x / L ) ^ 0 (L is the length of a cell). In this case, 
we see immediately that the determinations of [G{K)~]112 

which are analytic are also periodic with the same period 
as G{K). Therefore, these functions can be used to build 
Bloch waves. The function [G(iT)]~~1/2 which appears 
in Eq. (25) has poles on the real axis but no branch 
points. However, for real values of K, the function 
(r\ <p{K)) cannot have any pole; otherwise, it would not 
be normalized. This result is easy to understand. For 
K=K0, the states | <p(K)) and \M0) are orthogonal to 
each other, and therefore for K=K0, the function 
(r\xp(K)) of Eqs. (25) and (26) vanishes. The zero of 
(r\f(K)) cancels the pole of [G(iT)]-1 /2 and thus 
(r\ <p(K)) has a finite limit when K approaches K0. In 
brief, (r\ <p(K)) is analytic everywhere on the real axis. 
The corresponding Wannier functions decrease ex­
ponentially and we find in this way the same result 
as Kohn. 

In ^-dimensional crystals, more serious difficulties 
appear. If G(K0) = 0, the function [G(K)]1 / 2 has a 
singularity for K = K0 (for instance, an acnode) and 
often the effect of this singularity cannot be eliminated. 
This fact can be demonstrated as follows: By using 
another trial Wannier function \Mo), we can build a 
Bloch wave (r| </(K)) which is analytic in the vicinity 
of the value K = K0. We have 

P(K)=\<p'(K))W(K)\. (32) 

Now, we can separate the real and the imaginary parts 
of<r|«p'(K)>, 

<r|*/(K)>=<r|U(K)>+»<r|/(K)>. (33) 

Thus, JP (K) can be written 

P(K) = (|tf(K)><U(K)| + |/(K)><J(K)|) 
-i( |2?(K)></(K) | - | J(K)><fl(K) | ) . (34) 

The Hamiltonian is real and therefore the Wannier 
functions can always be real; in the same way, the trial 
Wannier functions are always real. Thus, G(K) is 
given by 

G(K) = (<tf(K)|M0>)2+(</(K)|iif„>)3. (35) 

Therefore, G(K) has a zero if, for K— K0 

(R(K)\M0)=0, (36) 

<J(K)|iBo> = 0. (37) 

In general, these equations are independent of_ each 
other. Let us expand (R(K)\M0) and </(K)|Af0) in 
terms of the components of (K— K0). G(K) is equivalent 
to a quadratic form, which, in general, is not the square 
of a linear form. For instance, for a two-dimensional 
crystal, we may write 

G(K)^aKx
2+2bKxKy+cKy

2, (38) 

with 
a > 0 c>0 ac^b2. 

Since, in general, ac>b2, the quadratic form is non-
degenerate [G(K)] 1 / 2 remains positive and well defined 
in the vicinity of K—K0, but retains a singularity at this 
point and cannot be used to build analytic Bloch waves. 
In this case, the Eqs. (36) and (37) define the singu­
larities of [G(K)]1 / 2 ; for n=2 we have isolated points 
(acnodes), for n=S we have lines of singularities. 

However, this situation does not occur when there is 
a center of inversion in the crystal. In this case, M 0 is 
also a center of inversion and the trial Wannier function 
(r|Af0) is symmetric or antisymmetric with respect to 
this point. Moreover, the Bloch function (r| <p'(R)) can 
be written in the form 

<r |P ' (K)>=<r |S(K)>+t<r |4(K)>, (39) 

where the functions (r 15(K)) and (r | A (K)) are real and 
respectively symmetric and antisymmetric (for instance, 
this fact can be proved by remarking that the function 
[<r| < p ' ( K ) ) + « - r | */(K)))*]is a Bloch wave of wave 
vector K, if it does not vanish identically). We see im­
mediately that we have 

G(K) = «5(K) |Mo))2, if (r \ M0) is symmetric, (40) 

G(K) = «^(K)|M'o))2 , if (r\M0) is antisymmetric. (41) 

In this case, [G(K)]1 / 2 is analytic and real: as the signs 
are irrelevant here, we put simply 

ZG(K)J»=(<p'(K)\Bo). (42) 
Finally Eqs. (23) and (32) show that we have 

<r|«>(K)>=<r|«/(K)>. (43) 

This equation gives several pieces of information: (1) As 
(r | <p'(K)) is analytic for K = K0, the function (r| <p(K)) 
is also analytic for K = Ko in spite of the fact that we 
have G(K0) = 0. (2) Equation (43) shows also that our 
method leads always to the same_result which is inde­
pendent of the initial choice of (r | Mo). (3) As the reason­
ing is valid also for complex values of K, we see that the 
functions (r | <p(K)) have in the K space the same singu­
larities as the matrix elements ( r |P(K) | r ; ) . 

When the crystal has no center of inversion, it is 
difficult to prove directly the existence of localized 
Wannier functions but sometimes this property can be 
established indirectly. Such a situation will be described 
now. Our assumptions are the following. (1) The Hamil­
tonian H{\} is a good continuous function of a real 
parameter X; for instance, we may have H=H0+W. 
(2) For X=Xo, there exists a band (B{X0} which can be 
described in terms of localized Wannier functions. (3) 
When X belongs to a compact neighborhood A of X0, the 
band 03{X} can be traced by continuity and never 
touches any other band corresponding to the same value 
of X. (4) In order to remain consistent with the point of 
view of paper I, we need also the following symmetry 
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condition: for XT^X0, the space group G#{X} of invari-
ance of H{\} is independent of X, and we have also 

Let us show now that for values of X belonging to A, 
these conditions imply the possibility of describing the 
band (B{X} in terms of localized Wannier functions. 
With each band (B{X}, we can associate the operator 
P{X} of projection on the set of all the eigenfunctions 
of H{\} which belong to (B{X}. According to Eq. (8) 
we have 

P*{X} = P{X}, (44) 

and we know also (see Sec. I I ) that the matrix elements 
(r | P{X} | r') decrease exponentially when | r— rr | goes to 
infinity. For each value of X, there exists a constant 
^4{X} which is the largest number for which we have 
( 0 < e < l ) 

l imexp[e^{X}]( r+t |P{X}| r ) = 0. (45) 
t-±co 

A{\} is strictly positive and continuous with respect to 
X. As the domain A is compact by definition, the lower 
bound of ^4{X} is also a strictly positive number A and 
for any value of X belonging to A, we have 

l i m ^ « < r + t | P { X } | r ) = 0. (46) 
t-*-oo 

We assume now the existence of the Wannier functions 
{r\M{\o}) associated with (B{X0} and we want to build 
Wannier functions (rjM{X}) for (B{X}. We note that 
we have 

(M'{\0}\M{\O})=BMM>, (47) 

|M{X0}HP{Xo}|M{Xo}>. (48) 

These equations suggest defining \M{\}) by a method 
of continuous projection, i.e., by the differential equation 

di\M{\})=dxP{\}\M{\}). (49) 

In order to take the initial condition into account, we 
may write also in a more explicit way 

(r |^{X})=(r |M{X0}> 

+ [ d\ fd»r'(T\diP{\}\i')(T'\M{\}). (50) 
Ao J 

On the other hand, for X = X0, we may assume 

limeeB*<r+t|Mo{X}) = 0 ( 0 < e < l ) . (51) 

I t is clear now, that as a consequence of Eqs. (50) and 
(45), the same property must be valid also for all the 
values of X which belong to A. 

We have now to verify that the functions (r|M{X}) 
are really Wannier functions. As a result of our assump­
tion (4) and of the invariance properties of the operator 
P{X}, the functions (r| M{X}) have exactly the required 
symmetry properties. Therefore, there remains to show 

that they are orthonormal and that they span the band 
(B{X). These conditions can be written explicitly, 

P{X}|ilf{X}>HM{X}>, (5 2) 

(M'{\}\M{\})=8MM>. (53) 

They can be derived easily by taking into account the 
fact that P{X} is a projection operator. By differentia­
tion of Eq. (44) ,we get: 

dxP{X}P{X}+P{X}dxP{X} = dxP{X}. (54) 

By using definition (49) and this equation, we obtain 
the identity 

ax[P{x}|M{x})-|M{x})]=p{x}axP{x}|M{x}) 
= -axP{X}[P{X}(M{X})-(M{X})]. (55) 

Now, we use the initial condition (48). Equation (55) 
shows that the relation (48) is also valid for any value 
of X belonging to A. The orthogonality relations can be 
derived in the same way: we use first the equation of 
definition (49) and the fact that P{X} is Hermitian, 
then Eq. (50) and last Eq. (49), to obtain the following 
identities: 

di(M'{\}\M{\}) 
= 2(M'{\}\dxP{\}\M{\}) 
= <M/{x}|(P{x}axP{x}+axP{x}P{x})|M{x}) 
= (Mf{\}\dxP{\)\M{\}). (56) 

Finally, we get, by comparison of these equalities, 

dx<M'{X}|M{X}> = 0. (57) 

The orthogonality condition (53) is a direct consequence 
of this relation and of the initial condition (47). 

IV. WANNIER FUNCTIONS FOR COMPLEX BANDS IN 
AN INFINITE CRYSTAL 

A. Wannier Functions and Symmetry 
Propert ies of the Crystal 

A definition of generalized Wannier functions for 
complex bands and a description of their symmetry 
properties has been given by the author in paper I, 
where a group theoretical point of view was adopted. On 
the contrary, we want to show here how to build 
explicitly, really localized Wannier functions and there­
fore, we are mainly concerned with analyticity prop­
erties. However, in order to introduce proper notations, 
it is useful to summarize the general properties of our 
Wannier functions, in agreement with the point of view 
expressed in I. 

The one-electron Hamiltonian / / is assumed to be 
invariant with respect to the transformations of a space 
group Gn which contains as a subgroup, the group T of 
translations of the crystal. The Wannier functions are 
associated with the sites M of a lattice which is gen­
erated by applying all the elements of G# to an arbitrary 
point Mo. Therefore, <£ is also invariant with respect to 
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G#. In general, <£ is not a Bravais lattice (translation 
lattice) but can be split into / Bravais lattices £>j 
[ j = 0- • •(/•— 1)]. They are generated by applying the 
elements of T to / points Mj of <£. These points Mh by 
definition, are the origins of the sublattices <£/ and cannot 
be obtained from each other by translations belonging 
t o T . 

The elements of GH which leave a site M invariant 
define a subgroup G#. The Wannier functions which are 
associated with M0 form a basis of an irreducible repre­
sentation TMo

m of GM0- They are denoted by the symbol 
(r\Mo(ni,n)) where ju is an index which is used to label 
the different basic vectors of the representation. The 
index m is considered as fixed but \x may take all possible 
values. On the other hand, with each site M, we associ­
ate one element SMMQ of GH, which has the property 
of transforming Mo into M. An isomorphism of GM and 
GMo is introduced by establishing a correspondence be­
tween the elements RM of GM and RMo of GMQ 

RM— S'MM0RM0SMMO"1 • (58) 

The Wannier functions corresponding to a site M are 
conveniently defined in terms of the Wannier function 
attached to the origin M0 of the lattice, by putting 

SMMQ I MO(M,IJL) ) . (59) 

The functions (r\M(tn,fj,)) form a basis of an irreducible 
representation TM

m of GM, isomorphic to TMo
m- More 

explicitly, we may write 

RM I M{m^)) = £ | M(m9v))(v \ ™RM | /*> • (60) 

The matrix mRM is a representation of RM which belongs 
to YM

m and we have according to Eqs. (58) and (59) 

<Hwi?if|/*>=<Hm*jfolM>- (61) 

For reasons of simplicity, the set of elements SMMQ is 
chosen as follows. First, we pick in GM, J elements 
SMJM0 transforming M0 into Mj, respectively; in particu­
lar, SM0M0 is identified with the unit element of G#. On 
the other hand, any point M of <£ belongs to one sub-
lattice £j (more exactly £J(M)) and the translation TMMJ 
which transforms Mj into M is an element of GH- There­
fore, SMM0 can be defined in a general way, by putting 

SMMQ—TMMJSMJMQ (MEz<£y). (62) 

When a set of Wannier functions can be used to de­
scribe a band (B, these functions can be expressed 
linearly in terms of the Bloch waves belonging to (B 
and conversely. Moreover, the Wannier functions are 
orthornormal, 

(M'(m,ii!) | M(tn,ti))=dMM>dw>. (63) 

The structure of the band determines the lattice <£ and 
the representation TMo

m> For instance, let d be the 
number of independent Bloch waves which, for each 
value of K, belong to (B and let dm be the dimensionality 

of rM0
w. As the Wannier functions must span exactly 

the space defined by the Bloch waves of (B, we must have 

d=Jdm. (64) 

Other symmetry requirements must also be fulfilled, but 
in the following, it is assumed that the structure of (B is 
compatible with a given type of Wannier function; this 
type is determined by <£ and YMo

m> 

B. Definition of Quasi Bloch Waves in 
Terms of Wannier Functions 

In this section, we assume the existence of a set of 
Wannier functions {t\M{m^)). Now for each value of 
K we associate with each sublattice £y, a quasi Bloch 
wave (r\ (pj(K,m,/ji)) which is defined in analogy with 
Eq. (17) by 

|^(K,m,M)) = ^ - 1 / 2 E expp(KM yM)] |M(w,M )>. (65) 
Me£j 

12 is the volume of the Brillouin zone. The orthogonality 
properties of the Wannier functions imply [see Eq. (58)] 

< ^ ( K / , m , M
/ ) k i ( K , ^ ) ) = 5 ( K - K 0 ^ ^ . (66) 

We remark that according to Eq. (64), for each value 
of K, the number of quasi Bloch waves is equal to the 
number d of Bloch waves. This is consistent with the 
fact that the Wannier functions can be expressed in 
terms of the quasi Bloch waves. If M belongs to £y, 
\M(ni,ix)) is given by 

\M{mtx)) = Qr^\ dnK 
JB.Z. 

X e x p [ - ; ( K M y M ) ] | W ( 1 W ) > . (67) 

In complete analogy with the case of simple bands, we 
can transform Eq. (65), in order to obtain 

<r| <pj(K,ni^)=:tt-^ E ^K t ( r - t | lTXm,M)) . (68) 
t 

As before, we represent by t the translation vectors of 
the crystal. 

Again, by applying always the same theorem on 
Fourier series, we know that if it is possible to build 
quasi Bloch waves which are analytic with respect to 
K = K ' + i K " in a domain | K" | <A, then there exists a 
set of Wannier functions which decrease exponentially 
at infinity. More precisely, these Wannier functions 
satisfy the relations 

lime^'<r+t|ilfy(w,iu)) = 0 0 < e < l . (69) 
t-*QO 

For this reason, in the following, we do not assume 
a priori the existence of a defined set of Wannier func­
tions but we try to build quasi Bloch waves directly by 
using the operator P (K) ; this task is performed in the 
Sec. H I D . Afterwards, it will be possible to introduce 



w - D I M E N S I O N A L E N E R G Y B A N D S A N D W A N N I E R F U N C T I O N S A705 

Wannier functions by using Eq. (67). But first, the 
characteristic properties of the Bloch waves which we 
want to obtain must be determined. 

C. General Properties of the Quasi Bloch Waves 

A set of waves (r| pj(K,w,/x)) can be considered as a 
set of quasi Bloch waves, if the functions (t\M(m,fi)) 
which are obtained by application of Eq. (67) are really 
Wannier functions; more precisely, the functions 
(r\M(tn,fj,)) must fulfill the following requirements: 
(1) They satisfy orthogonality conditions [Eq. (63)]. 
(2) They span the space defined by the Bloch waves 
belonging to (B. (3) They satisfy symmetry conditions 
[Eqs. (59) and (60)]. 

Consequently the waves (r| ^(K,W,JLO) must satisfy 
also a set of three conditions: 

(1) They must be orthonormal. 
(2) For each real value of K, the states | <pj(K,m,fi)) 

span the space S(K) defined by the Bloch states of wave 
vector K belonging to (B. 

(3) They have symmetry properties which will be 
examined now. 

The reciprocal space vector which is the transform of a 
wave vector K by a point group operation corresponding 
to an element R of the space group G# is denoted by JRK. 

The symmetry properties of the Wannier functions 
are summarized by the Eqs. (59) and (60) and lead to 
the following relations which are consequences of 
definition (65): 

RMoI <po(K,m,/z))=£ | <po(RMoK9tn,v))(v I mRM01M>, (70) 
v 

SMJMO] <^O(K,W,M))= I <Pj(SMMoK>,m,v>))- (71) 

Conversely, if these symmetry conditions hold for a set 
of waves (r| ^(K,w,/x)), the corresponding Wannier 
functions satisfy the required symmetry conditions. 

D. Direct Construction of Quasi Bloch Waves 

When the band (B is complex (d= 1), the Bloch waves 
of wave vector K belonging to (B form the basis of a 
subspace S(K) of dimension d which is also spanned by 
the quasi Bloch waves which correspond to the same 
value. Therefore the projection operator P(K) on S(K) 
can be written [compare with Eq. (4)] 

P(R) = Z I w(K,m)M)>(^(K,m^) | . (72) 

Moreover, we note that according to Eq. (65) we have 

| ^(K.m^^n^PiKjlMjim^)). (73) 

In order to build directly quasi Bloch waves, we want 
to generalize the method of Sec. IIIB and the preceding 
formula shows clearly how to proceed. 

We introduce a set of trial Wannier functions 

\M(m,n)) which have the same symmetry properties as 
the Wannier functions which we are trying to obtain, 
namely: 

RM\MM) = Y,\MM)(V\™RM\V) , (74) 
V 

\M(mJfi)) = SMMo\Mo(mifx)). (75) 

Thus, these trial functions which correspond to a site M 
form a basis for the irreducible representation TM

m of 
GM. For reasons of convergence, we choose functions 
which decrease exponentially (or faster) at infinity. For 
instance, for | r — tM \ > R the functions (r | M{m^\x)) may 
be equal to zero, for |r—xM\ ^ R, they may be equal to 
a polynomial function of the components of (r—rM). As 
GM is a subgroup of the full rotation group (with reflec­
tions) around M, the symmetry requirements can be 
fulfilled easily. 

Now the unnormalized wave (r|^y(K,w,/z)) can be 
defined by putting 

|^(K,m)M)>=P(K) | JByOM). (76) 

In order to transform this wave into a quasi Bloch wave, 
we introduce a finite orthonormalization matrix G(K) 
which is defined by its matrix elements 

0 > | G(K) | j V>=(MM,n) I P(K) | MM,*)). (77) 

This matrix is of order d [see Eq. (64)] and, for real 
values of K, it is Hermitian and non-negative. These 
properties are trivial consequences of its definition. If 
G(K) remains positive for real values of K, it is possible 
to define G1/2(K) as the positive definite matrix of which 
the square is G(K). Finally, quasi Bloch waves are intro­
duced by putting 

| w(K,«rfi)>= E ^ ( I W O X J - V I G - ^ K ) I h). (78) 

We must verify that this definition is compatible with 
the requirements which must be met by the quasi 
Bloch waves. The introduction of the normalization 
matrix G(K) insures the validity of orthogonality rela­
tions; in fact, by taking Eqs. (78), (76), and (6) into 
account, we get 

(<Pj(K,m,fi)\<pj>(K',m,ii')) 

= «0(K-K') E<iM|G-1 / 2(K)|/V'> 
j'V" 

j'"n'" 

X (MAm#") I P(K) I MMm,,x'")) 

X ( / V " | G - 1 / 2 ( K ) | i V ) 

= 5c(K-K,)5j7'5MM-. (79) 

On the other hand, the states \\(/j(K,m,ix)) and 
| <pj(K,m,iJ,)) belong to the subspace S(K) by definition. 
As, for each value of K, there are d states | <pj(K,m,ix)) 
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which are orthogonal to each other, [see Eq. (64)], 
they span S(K) completely. 

Now, we must check the symmetry properties of the 
states | (pj(K,m,fji)). I t is clear that, by construction, the 
states \\pj(K,?n,n)) satisfy symmetry conditions analo­
gous to Eqs. (70) and (71) and, therefore, they have 
exactly the symmetry properties required for the states 
| <pj(K,tn,n)). On the other hand, it is easy to show that 
the introduction of the normalization matrix does not 
destroy the symmetry of the problem. For instance, if 
we replace the origin Mj0 of a sublattice <£y0 by another 
point Mj0

f of the same sublattice, the states | ^ 0 ( W , M ) ) 
are multiplied by the phase factor exp[iK«My0'My0] 
whereas the other states |^-(K,w,/x)) (with J5*jo) re­
main invariant. But the replacement of Mj0 by Mj0' 
leads also to a unitary transformation of the Hermitian 
matrix G(K). As a result of both effects, the quasi Bloch 
waves | <pj(K,m,fj,)) defined by Eq. (78) undergo the 
same phase transformation as the states |^y(K,m,/i)). 
The validity of the symmetry conditions given by Eqs. 
(70) and (71) appears, now, as a rather trivial con­
sequence of this remark; a general space transformation 
introduces a permutation of the sublattices <£/ and also a 
change in the origins of each sublattice but it is very easy 
to take care of this fact by suitable phase transforma­
tions of all the waves; therefore, the states | <pj(K,w,/x)) 
have the same symmetry properties as the states 
|&<K,w,ju)>. 

Thus, our method of constructing quasi Bloch waves 
works well when it is possible to give a precise meaning 
to the definitions (76) and (78) of the states |^-(K,w,/x)) 
and | (pj(K,m,n)). 

E. Analyticity Properties of the Quasi Bloch Waves 

In order to define quasi Bloch waves more explicitly, 
we may use an ordinary space representation for the 
states and operators. Thus, Eqs. (76), (77), and (78) 
can be written 

(r|^.(K )m ) /x))= ^ V ( r | P ( K ) | r ' ) ( r ' | M X m , M ) > , (80) 

O'M IG(K) I iV> = J d-rd-x'iMAm^) | r) 

X < r | P ( K ) | r ' ) < / | ^ ( w y ) > , (81) 

<r| <pj(K,m,n))= Z<r|iMK>,At')> 

X 0 y | [ G ( K ) ] - ^ | i M > . (82) 

The fact that (B is now a complex band does not prevent 
the matrix elements ( r | P ( K ) | r / ) from being analytical 
with respect to K = K'-f-iK" in a strip | K" | <A where 
A is a positive constant independent of K', r, and r''. On 
the other hand, we choose trial Wannier functions which 
decrease exponentially at infinity as in the case of simple 

bands; for instance, they may satisfy the conditions 

lim eAr(r\Mj{m,}x))< oo . (83) 
r->oo 

Since Eq. (28) remains valid for complex bands, we see 
immediately that the functions (r\^j(K,m,fi)) and the 
finite matrix G(K) are analytic functions of K in the 
domain | K" | <A. 

On the other hand, by definition, for real values of K, 
G(K) is an Hermitian non-negative operator and in 
many cases may be really a strictly positive operator. 
For real values of K, we can define [G(K)]1 / 2 as the 
non-negative matrix of which the square is G(K). If 
G(K) is strictly positive, for real values of K, [G(K)]1 / 2 

can be continued analytically in a strip of the complex 
K space | K" | <C^A where C is a positive constant. 
In this case, [G(K)]~1 / 2 is also analytic in the same 
domain and by using Eq. (82), we define a quasi Bloch 
wave (r| <p(K,w,/x)) which is also analytic in the domain 
| K" | < C. Accordingly, the corresponding Wannier 
functions (r\M(m,ii)) decrease exponentially at infinity. 
On the contrary, if one or several of the eigenvalues of 
G(K) vanishes for real values of K, we meet the same 
kind of difficulty as in the case of simple bands, and, in 
general, the difficulty does not disappear if the crystal 
has a center of inversion [for instance, if two eigen­
values of G(K) vanish at the same time]. 

However, in the tight binding limit, by choosing 
atomic orbitals (with a cutoff) as trial Wannier func­
tions, it is always possible to build a matrix G(K) which 
remains strictly positive in the real K space. [This is 
case (1) of Sec. I I I C ] On the other hand, this result 
can be extended a little further by using a perturbation 
method. [This is case (4) of Sec. I I I C ] We consider a 
Hamiltonian H{\} which is a good continuous function 
of the real parameter X and we assume that a band 
(B{Ao} can be spanned by a set of localized Wannier 
functions. For values of X belonging to a compact 
neighborhood A of X0, the band (B{X} can be treated by 
continuity and remains isolated. Now, we can introduce 
the Wannier function (r | M(m,ix,\)) by using the opera­
tor P{\} which is associated with (B{X}. By definition, 
they are solutions of the equation 

dx\M(m^\)) = dxP{\} |M(m,/x,A)>. (84) 

We can take also into account the initial condition by 
putting 

|M(m,/*,X)>= \M(m,fi,\o)) 

+ f d\dxP{\}\M(m,fx,\)). (85) 

The method which is used in Sec. I I IC to prove the 
validity of this kind of definition can be generalized in a 
straightforward manner; it can be shown also by apply­
ing the same kind of arguments that the functions 
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(r | Mj(m,fi,,\)} decrease exponentially when | r | becomes 
infinite. These results are really independent of all con­
sideration of symmetry. However, if we want to build 
Wannier functions (r|M(w,/x,X)) which satisfy the sym­
metry requirements listed in Sec. IVA, we must assume 
also that the Hamiltonians H{\} have suitable sym­
metry properties. For instance, we are safe, if the sym­
metry properties of H{\} are independent of X. 

Thus, when the band (B is complex, it is often possible 
to build really localized Wannier functions. Unfortu­
nately, our method is not completely satisfactory, be­
cause we do not know whether it can be applied with 
success in any case. Some ambiguities remain also in the 
definition of the quasi Bloch waves. As the reader will 
realize, these waves depend to a certain extent of the 
shape of the trial Wannier functions and we do not know 
yet what is the best way of selecting these functions. 

V. SUMMARY AND CONCLUSION 

In an ^-dimensional crystal, the energy bands can be 
simple (d= 1) or complex (d> 1) but, by definition, they 
are always assumed isolated from each other. The space 
of functions defined by the set of all the Bloch waves 
which belong to a given band can often be spanned by a 
set of Wannier functions attached to the sites of a 
lattice <£ (which is not always a translation lattice). In 
this case, the structure of the band determines the 
lattice and the symmetry properties of the Wannier 
functions, as was shown in paper I. However, these 
symmetry requirements do not indicate how to build 
properly localized Wannier functions. 

On the other hand, the Bloch waves of wave vector 
K which belong to a given band (B define a subspace 
S(K) of dimension d and the operator P(K) of pro­
jection on S(K) has interesting analyticity properties 
which have been derived in paper I I . Actually, the 
matrix elements (r | P(K) | r') can be defined for complex 
values of K and are analytic with respect to K = K ' + i K " 
in a strip of the complex K space defined by an equation 
of the form | K" | <A where A is a constant independent 
of K, r and r'. 

Both results are used to build localized Wannier 
functions. First, we introduce trial Wannier functions 
which are well localized and have the same symmetry 
properties as the Wannier functions which we want to 
obtain. Then, with the help of these trial functions and 
by using the operator P (K) , we build, for each value of 
K, Bloch waves (d= 1) or quasi Bloch waves which span 
the subspace S(K) and are orthonormal. Afterwards, 
Wannier functions are obtained directly by integration 
of these waves with respect to K in the Brillouin zone. If 

the waves are analytic with respect to K = K ' + i K " in 
a strip of the complex K space given by an equation of 
the form | K " | < J 3 , then the corresponding Wannier 
functions have exponentially decreasing tails and the 
converse is also true. As in general the analyticity of the 
operator P(K) entails the analyticity of the waves which 
are built by using this operator, we have a means of 
proving the existence of really localized Wannier func­
tions in ^-dimensional crystals. 

Unfortunately, the normalization of the waves intro­
duces square roots in our formulas, and this fact creates 
a difficulty; the analyticity of the waves which are built 
by our method can be destroyed by the introduction of 
branch points for real values of K, and we do not know 
whether, in the general case, this bad situation can 
always be avoided by a proper choice of the trial Wannier 
function. 

However, when the band is simple, the difficulty 
mentioned above does not appear (1) if the crystal is 
linear or (2) if the crystal has a center of inversion. 
When at least one of these conditions is realized, the 
Bloch waves have the same domain of analyticity as the 
matrix elements ( r | P ( K ) | r ' ) . Moreover, if the crystal 
has a center of inversion and if the band is simple, the 
Wannier functions are determined and independent of 
the particular shape of the Wannier function which has 
been used to build the corresponding Bloch waves; in 
this case they are also symmetric or antisymmetric with 
respect to the sites around which they are located. 

More generally, the difficulty can be often avoided 
by selecting properly our trial Wannier functions, and 
for instance in the following cases for which the band 
can be simple or complex, (a) In the tight binding limit, 
we can choose atomic orbitals (with a cutoff) as trial 
functions, (b) The Hamiltonian can be considered some­
times as a continuous function of a real parameter X. 
Then if a band (B{X) of H{\} is well defined and isolated 
for X=X0, it can be traced by continuity in a neighbor­
hood A of Xo; in this neighborhood A, it remains isolated, 
and if the symmetry properties of H{\} are suitable, 
(B{X} retains its general structure. In this case, if (£{X0} 
can be described in terms of localized Wannier functions, 
then, for values of X belonging to A, the same property 
remains valid for (B{X}. 

Thus, the existence of Wannier functions decreasing 
exponentially at infinity has been established for 
^-dimensional crystals in many cases. On the other 
hand, it is very easy to show that the Wannier functions 
which correspond to a band in a finite crystal are directly 
related to the Wannier functions of the corresponding 
infinite crystal, and have very similar properties, 


